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1. Introduction 
In Lumley (1971) a relatively weak form of central-limit theorem was proved 

for dependent random processes. Much stronger theorems have been in the 
literature for some time (beginning with Rosenblatt 1956); but the conditions for 
these theorems (principally, the ' strong-mixing ' condition of Rosenblatt), 
though intuitively appealing, are not directly verifiable in a concrete situation. 
In addition, the stronger theorems predict more than can be measured. The weak 
theorem of Lumley (1971) predicts only what can be measured, under conditions 
that are more easily interpretable and verifiable for turbulence. 

Batchelor (1953) was the first to discuss, without proof, the applicability of 
a central-limit theorem to turbulence problems. Briefly, Batchelor speculated 
that, if turbulence is a statistically stationary random process, and if segments of 
h i t e  length are considered in some sense statistically independent, then an 
integral, being the sum of such segments, should asymptotically have a Gaussian 
distribution, by the central-limit theorem. In Lumley (1971) higher-order cumu- 
lants of integrals were considered, and it was shown that, under certain simple 
conditions (essentially, the existence of integral scales), the non-dimensional 
moment ratios must asymptotically approach Gaussian values. 

The work presented in this paper began with the idea of testing the results of 
Lumley (1971) against experimental data. In  the course of the investigation, 
however, it  was discovered that the limiting behaviour of the higher-order 
moments is closely related to the properties of higher-order spectra, which have 
been a subject of considerable interest among mathematicians in recent years. 
(See e.g. Rosenblatt 1966; Brillinger & Rosenblatt 1967 a;  Rosenblatt & van Ness 
1965.) 

There exists, of course, an extensive mathematical literature on second-order 
spectra of stationary random processes and techniques relating to their estima- 
tion. Measurements of second-order spectra associated with turbulent flow are 
common, so that the nature and behaviour of these spectra are well understood. 
Despite the recent mathematical interest in higher-order spectra of random pro- 
cesses in the field of turbulence, there is at present no definite application of 
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higher-order spectra (although the Fourier-transformed Navier-Stokes equation 
was written in terms of the bispectrum by Yeh & Van Atta 1973). The most 
closely related work on turbulence is due to Frenkiel & Klebanoff (1967): they 
investigated properties of higher-order correlations in a turbulent velocity field. 
Some application of higher-order spectra in the field of oceanography is found in 
the work of Hasselman, Munk & MacDonald (1963) : probabilistic models are used 
to describe ocean waves and ship motion. This paper stimulated the interest of 
the mathematical community referred to above. 

The purposes of the present paper are thus two: (i) to examine further the 
central-limit theorem proposed in Lumley (1971), by applying it to turbulence 
data; (ii) to investigate the higher-order spectra of turbulent flows. 

2. Central-limit theorem applied to turbulence 
The main argument in Lumley (1971) is as follows. Take u(t), a stationary 

random variable. If an integral of u(t) over the time interval T is considered, then 
it is expected that its value will also be a stationary random variable which 
depends on the origin of the time interval. If the integration time T is large com- 
pared with the integral scale Y, then the integral can be broken up into sections 
of length A larger than 2 F ,  so that the sections are approximately independent. 
(Cf. Tennekes & Lumley 1972, pp. 213-214.) That is, 

j0%(t)dt = joAu(t)dt+J)(t)dt+ ... 

As A increases, the sections of the integral become more nearlyindependent, 
since adjacent sections depend upon each other only near the ends. If the length 
of each section is A, and the total integration time is T, the number of sections 
is TlA. 

If matters can be arranged in such a way that both A and T/A go to inh i ty  as 
T -+ co, then there will be more and more sections, and they will become less and 
less dependent, so that the probability distribution of the integral on the left-hand 
side of (1) may become Gaussian under certain conditions. The conditions to be 
satisfied by the random process are listed in Lumley (1971). The primary in- 
terest relates to the question of whether or not the sections of the integral become 
independent fast enough for the central-limit theorem to be applied successfully. 

u(t)dt,  then it is shown in Lumley 

(1971) that, if all the moments exist, a necessary and sufficient condition for 
asymptotic independence of integrals over adjacent segments is 

If C,(T) denotes the pth cumulant of loT 
lim C,(T)/T+const. $. 0, 
T-ta, 

for all p. Satisfaction of (2) for any p assures the Gaussian bchaviour of the 
corresponding m0ment.t 

f Asymptotic independence is not necessary for asymptotic normality, although it is 
physically most plausible. The necessary and sufficient condition for asymptotic normality 
is simply C,(T)/Ttfl -+ 0, p > 2, supposing that C,(T)/T 3 const. =f= 0. 



Application of central-limit theorems in turbulence 435 

In  order to show how fast the integral becomes Gaussian, the quantity 
expressed by (2)  is further investigated. Defining gP as the pth cumulant of u(t) 
at p different times, the left-hand side of ( 2 )  is written 

Cp(T) /T = T - l ~ T . . . ~ o * % , d t l . . . d t p  = 2T-1 J T  0 P - 1  ... JTJ;%pdtl...dtp 0 
O P  

= 2p-1T-110Tdt,/t1 0 p-1  ... j t1%pdt2. . .d tp .  0 (3) 

Using the definition of stationarity, and introducing new variables t ,  - tl = x = - ~ ,  
( 2 )  becomes 

[C, I] denotes the CesBro-1 value of the integral. Define an integral scale by 

Thus, for a process whose moments exist, a sufficient condition for Gaussian 
behaviour of thepth moment is the existence ( $: 0) of thepth-order integral scale. 
Using the relation C2(T)+2%2(0)TF2, an alternative form of (6) is given in 
Lumley (1971): 

For p = 4, (7) becomes 

K ,  and K,  are the kurtosis of x = u(t) dt and u(t), respectively. Equation (8 )  

says in essence that the variable x behaves like a Gaussian variable in terms of 
its fourth moment as T -+ co, and the rate of approach is inversely proportional 
to the integration time T .  

The above analysis was applied in Lumley (1971) to the ‘weak interaction’ 
hypothesis introduced by Kraichnan (1959). The essential qualitative content of 
this hypothesis is that the effective dynamical coupling and statistical inter- 
dependence, among any few individual Fourier amplitudes corresponding to 
different wave vectors, are very weak. The substantial departure from normality of 
the velocity distribution in a turbulent field appears as the summed effect of very 
many of these very weak statistical dependences. Simply stated, the hypothesis 
is that the narrow-band filtered Fourier coefficients actually become statistically 
independent of each other asymptotically as the bandwidth goes to zero. 

IoT 
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Since a narrow-band filtered Fourier coefficient of bandwidth Aw is (propor- 
tional to) the integral over an increasing interval T = l /Aw of u(t) exp ( iwt ) ,  we 
may expect to be able to apply the above reasoning to this case. Rewriting (8), 
we would have 

K(Aw) - 3 = [R(W) - 31 [2&Aw] (</9J3. (9) 

) (10) 

Y2 is the integral scale defined from the spectrum, i.e. 

& = nS(w)/2.  

The expression given in (9) is the form to which the data is applied in this work. 
The fact that u(t) exp ( iwt )  is both complex and only second-order stationary will 
introduce some analytical complications, which are not of a serious nature. The 
experimental results thus serve to verify both the theorem and the weak inter- 
action hypothesis. 

3. Higher-order spectra 
The representative forms of the quantity Cp(T) may be written 

I CJT) =JyoTE{u(t)u(t')}dtdt' = 2E{u2}T loT ( 1  ,t/T)R(t)dt 

The most convenient extension of the second-order autocorrelation R(t) = 9x2(t) 
to higher orders is the cumulant gp(t1, .. ., t p ) ,  rather than the moment of orderp. 
This is because, for p > 3, there are in general directions in the hyper-space of the 
moment along which the moment does not vanish, even if the random function is 
asymptotically statistically independent of itself at large separations. In  the 
cumulant, on the other hand, just this part is subtracted, so that (in the case of 
asymptotic independence) the cumulant will vanish in all (hyper) directions. 

As is well known, the second-order spectrum is defined in terms of the 
correlation function as 

S(w)  = - exp ( - iw7) R(7) dT. 
2n -a 

Designate X(w) by X2(w), and write 
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Then, in a similar manner, it  might be suspected that spectra higher than second 
order may be defined, using higher-order cumulants, as 

S,(O,, w2, - * * 7 wp-l) = - Srn ... 1 exp[-i(w,T1+w272+ ... +wp-17p-l)~ 

(13)t 

Formal delinitions (with conditions for existence, etc.), corresponding to (13), 
were given by Brillinger & Rosenblatt (1967 a) ,  who also discussed (1967 b )  con- 
vergence of estimates for these higher-order spectra. This discussion of con- 
vergence has many points of similarity with the analysis given here. If we take 
the case of p = 4 in (13), the fourth-order spectrum is defined by 

a0 1 
(27r)P-1 --mP-l --m 

x qP(~,, . . ., T ~ - ~ )  dt, . . . 

In Q 2 we suggested that, for narrow-band filtered Fourier coefficients, the rate 
at which they approach Gaussian behaviour might be given by 

K ( A w )  - 3 g [Kfco) - 31 [2T2Aw] [y4/y2l3. 

Aw = -, F - - 8 ( w ) ,  g2-= IOa0 S,(w)dw, 
1 7l 

T 2 -  2a2 
Here, 

Equation (9) can be rewritten as 

1 
[ K ( A w )  - 31 N (27r)3S;(w)= 

1 T 
64 ~ [ K ( c o )  - 31 
- 

where some of the quantities are not yet well-defined.. Now, let us consider the 
Fourier coefficients, defined as 

~ ( w )  = jOT u(t) exp ( - iwt) at, v(t) = u(t) exp ( - iwt). 

The variable w ( t ) ,  defhed this way, is only second-order stationary, and is in 
addition complex. Hence, it is not immediately clear what form the fourth 
moment should take. A careful analysis will be carried out in 5 7.2. For now, we 
shall use the result obtained there : 
- - - -  

3(ReX)22+(ImX)4- 3(ImX)22) 

t Although V, appears to be a function oft,, .. ., t,, in fact stationarity implies that it is 
a function of only p - 1 differences. We shall consciously abuse notation somewhat by using 
the same letter gD to indicate the function of t,, . . . , t ,  and the function of the differences 
r,, ..., rp-l .  
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We shall take the normalized left-hand side of (16) as our definition of theexcess 
of the Fourier coefficients: - -  -~ 

(ReX)4-3(ReX)22+(ImX)4-3(ImX)22 
(ReX)22+(ImX)22 

K(Aw) - 3 ~~ 

The expression (16) is clearly proportional to a particular part of the fourth- 
order spectrum given by (14), and will be examined further in § 7.2. Evidently, 

I” - + cos w(xl + 5 2  + x,)} dx, dz2 ax, 

is the proper expression for the higher-order integral scale T4 of the random 
variable v(t).  Thus, using this, (15) becomes 

The right-hand side of (17) is now properly normalized. We &all take it as the 
definition of that certain part (referred to above, and yet to be identified) of the 
fourth-order cumulant spectrum which we designate by S4(w).  Thus, 

4. Data acquisition 
The non-Gaussian data were obtained in open jet turbulence, anctin a simple 

pipe-flow turbulence. The purpose of collecting the data in two different turbulent 
flows was to examine the effect of the scales involved in each of the flows on the 
rate of convergence to Gaussian of the variables. The range of scales available in 
a turbulent flow is monotone in the turbulent Reynolds number (based, say, on 
r.m.s. fluctuating velocity and Taylor microscale). Consequently, two flows were 
selected with widely-differing Reynolds numbers. The estimated turbulence 
Reynolds number for the jet flow is 670, and that of the pipe flow is estimated 
to be 55. 

4.1. Jet turbulence 

The jet turbulence signals were obtained in the high-shear mixing layer of an axi- 
symmetric jet. The jet facility used for the acquisition of the data was originally 
designed and constructed by Nilsen (1969), and is a t  the Garfield Thomas Water 
Tunnel of the Applied Research Laboratory of The Pennsylvania State 
University. The details of this facility, and the turbulence characteristics of the 
flow, can be found in Nilsen (1969) and Von Frank (1970). Briefly, a standard 
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screened plenum and contraction produce a parallel uniform, low-turbulence 
flow at  30 m s-l, which exits horizontally from a 0.3 m diameter hole in a large 
baffle plate. 

The point in the flow field selected for the measurements was six jet diameters 
downstream, and one half jet diameter radially outwards in the horizontal. 
According to the data obtained by Nilsen (1969), this measurement position is 
just beyond the extent of the potential core region in the downstream direction. 

Several characteristics of the turbulence were measured prior to recording the 
turbulent velocity and velocity derivative signals on a magnetic tape. The 
turbulence intensity ( S ) i / U  at the measuring position was found to be 0.149, 
based on the exit velocity. The Taylor microscale h was found to be 0.212cm. 
It was obtained from 

A = (U2p [ ( a ~ / a ~ ) z ] - + .  (19) 

The mean-square spacewise derivative was obtained from the time derivative, 
using Taylor’s hypothesis : 

au/at = - u aulax. 

For the measurements of velocity and its time derivative, a constant- 
temperature hot-wire anemometer, originally designed by Lumley & Wyngaard 
(1967), was used in conjunction with a Disa 55D10 linearizer. An overheat ratio 
of 0.8 and a linearizer exponent setting of 1.8 were found to yield a linear calibra- 
tion curve. The linearizer output was fed t o  a Butterworth filter-differentiator 
(Wyngaard & Lumley 1967). The latter has a pure amplifier, and a low-pass filter 
with the added capability of differentiation. The output of the filter-differentiator 
was then essentially proportional to either the streamwise velocity fluctuation or 
its time derivatives. The final signals were recorded simultaneously in FM mode 
at 30 i.p.s. on a Pemco recorder. The total record of data obtained was approxi- 
mately 300s. The hot wire used in this measurement was a silver Wollaston, 
with diameter 1-27,um, a span of 1.8 mm between supports, and an etched length 
of approximately 0.7 mm. 

4.2. Pipe-$ow turbulence 

The experimental set-up for pipe-flow turbulence can be achieved with ease, 
another reason for selecting this particular flow. The mean velocity selected for 
the flow was 7.6 m a-l; and the pipe diameter was 2.54 cm. The corresponding 
Reynolds number, based on pipe diameter, was 1.2 x lo4. The length of the pipe 
was 1.5 m, or approximately 60 diameters. The turbulence intensity was approxi- 
mately 3 % at the measuring position at the exit. 

The inlet end of the pipe was connected to a centrifugal blower via a flexible 
hose, to eliminate possible vibration from the motor. The hot wire used was the 
same as that used in the measurement of jet turbulence (diameter 1-27,um, 
etched length 0.7 mm). The measuring position was approximately one half-radius 
from the centre-line. 

The turbulence signal was obtained using the same constant-temperature 
anemometer. The linearizer was deemed unnecessary, because of the low turbu- 
lence intensity of the flow. The output signal from the anemometer was then 
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passed through the Butterworth filter-differentiator, to the Pemco tape recorder. 
The differentiated velocity signals were recorded in FM mode on four of its 
channels. Each channel was recorded separately: i.e. after recording each, the 
tape was rewound and the next recorded. This procedure was repeated until all 
the four were filled. This gave four channels of independent data, a total record 
length of approximately 1200s. 

5. Data processing 
The data were processed by a Pastoriza analog-to-digital converter. The result 

was Fourier transformed. The procedures of conversion and Fourier transforma- 
tion were very similar to those described by Takeuchi & Lumley (1976). 

For jet flow, the highest frequency present in the data was found to be 14wz; 
thus, a sampling rate of 36 000 samples s-1 was chosen for this flow. The funds- 
mental frequency (minimum filter bandwidth) A f selected was approximately 
4.4 Hz. The corresponding number of data points in a given block to achieve this 
frequency resolution was N = 8192 points. For pipe flow, the spectrum band was 
found to be 7 kHz; thus arate of 18 000 samples s-l was chosen. The fundamental 
frequency (filter bandwidth) chosen was 17.57 Hz, the corresponding number of 
data points in one block being N = 1024. 

In  estimating the adequacy of the fundamental frequency (alternatively, the 
bandwidth of the filter), the integral scale of the flow was estimated on the basis 
of the geometrical scale involved. Let the integral scale be estimated by 
F N 9 / U  s, where 9 is the characteristic length and U is the mean flow velocity. 
Then, for the jet flow, 9 N 0.3 m, U N 18 m s-1 and F N +s s. This integral scale 
with the bandwidth resolution (Af) of approximately 4 H z  will give a product 
A f F  N &. In  pipe flow, the characteristic length 9 is approximately 2.54 cm, 
and with mean flow velocity of U = 7*6rns-l, we obtain 9- N &s. Were 
approximately the same bandwidth resolutions desired in the pipe flow as in the 
jet flow, a bandwidth of Af = 20Hz would be sufficient to  give a product 
A f F  - A. Thus, the selected bandwidth of 17-57 Hz has approximately the 
same bandwidth resolution as the jet flow, or better. 

A preliminary statistical analysis of the digitized data was performed, which 
included probability densities and spectra. (The methods of computation are 
described in Takeuchi & Lumley 1976.) The Fourier-transformed data were 
digitally filtered, and the filtered Fourier coefficients analysed statistically. 

In  the investigation of the filtered Fourier coefficients, the filter bandwidth 
was formed a8 follows. Let Af be the fundamental filter bandwidth with centre 
frequency at fo. Then the following bandwidths correspond to the frequencies 
written beside them : 
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(signal) /r.m.s. (signau 

FIGURE 1. Probability density of DulDt for jet flow. 
+ , experimental data. -, Gaussian. 

(signa1)lr.m.s. (signal) 

FIGURE 2. Probability density of Du/Dt for pipe flow. 
+ , experimental data. -, Gaussian. 
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This method of filtering was applied to both the real and imaginary part of the 
Fourier coefficients. The statistical analyses of the resulting filtered coefficients 
were performed separately for the real and imaginary part of the coefficient, and 
the final values of the moment were obtained by taking the average of the two 
parts. The number of data used in the actual calculations of kurtosis for amplitude 
statistics were: for jet flow, 1250 records of 8192 data points per record; for pipe 
flow, 20 000 records of 1024 data points per record. Thus, for the statistics of the 
filtered Fourier coefficients, the pipe flow had 20 000 data points, while jet flow 
used 1250 data points for each bandwidth. 

6. Characteristics of data 
Figure 1 represents the normalized probability density of the jet turbulence 

derivative signal. The solid curve represents the Gaussian density with the same 
mean standard deviation as the turbulence signal. The probability density in 
figure 1 was obtained using a 4 x los data set. Figure 2 is a similar plot for the 
turbulence derivative signal of pipe flow. The probability density in figure 2 is 
based on a data set size of 5 x lo6 points. Figures 1 and 2 show that the experi- 
mental results are slightly skewed to the negative side, as they should be, and do 
not become seriously non-Gaussian until a signal to r.m.s. (signal) ratio of three. 
Thus, the fact that the turbulence derivative signal is not Gaussian cannot be 
seen in the probability density plot, unless proper care is taken to  cover more 
than three times the standard deviation in the digital processing. The results of 
the amplitude statistics gave a skewness (non-dimensionalized third moment) of 
-0.337, and a kurtosis (non-dimensionalized fourth moment) of 6-32 for jet 
turbulence, and a skewness of -0.399 and a kurtosis of 4.74 for the pipe 
turbulence. 

Figures 3 and 4 represent velocity spectra of jet and pipe turbulence, respec- 
tively. The plots were normalized so that 

This is a consequence of the definition of the one-dimensional velocity spectrum 
F(K) and the isotropic relation 

E = 1 5 ~ ( i h / h ) ~ .  
7 is the Kolmogoroff microscale 

v is the kinematic viscosity. The values of T,I were found to be 0-04mm for the jet 
flow, and 0.17 mm for pipe flow. 

Figures 5 and 6 are the similar plots for derivative signals. By use of figures 
3 and 4, the universal constant defmed by a in P(K) = C&K+, for KT,J -g 1, is found 
to be a N 0.53 for jet flow and a N 0-57 for the pipe flow. These values of a lie well 
within the range of values reported by other workers. 

7 = (v3/e)k 
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KT 

FIGTTRE 3. Kolmogorov plot of velocity spectrum for jet flow. 

K l l  

FIGURE 4. Kolmogorov plot of velocity spectrum for pipe flow. 
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FIGURE 5. Kolmogorov plot of dissipation spectrum for jet flow. 

flow. 
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7. Results and discussion 
7.1. Central-limit theorem 

In 4 3 it was shown that, under appropriate conditions, the narrow-band averaged 
Fourier coefficients of dependent random variables become Gaussian, and statisti- 
cally independent of each other asymptotically as the bandwidth goes to zero 
('weak interaction '). Taking as evidence of the approach to Gaussian behaviour 
the approach of the kurtosis of the process to three, the relation given by (9) was 
obtained. The validity of this expression was examined using the data obtained 
in this investigation. 

Figure 7 is the result obtained for jet flow at a centre-frequency of 5.8 kHz and 
a minimum bandwidth of 4-39 Hz; the corresponding bandwidth to centre- 
fiequencyratio was 7 x The slope is clearly tending toward one, as predicted. 
The constant in (9) is evidently close to lo2, so that &/& w 4-65. The value of 
the integral scale calculated from 

q = 7 T S ( W ) / 2  

was 4.78 x 10-5~1, which gives f4 w 1.94 x 10-4s. The integral scale of velocity 
itself 5, calculated from the normalized spectrum is 9.26 x 10-ss. (For the 
method of calculation, see Lumley 1970.) This gives a ratio of FJF4 w 47.8. The 
length of record used in the calculation was approximately 2845, which corre- 
sponds to roughly 7 x lO6Y2. 

Figure 8 represents the result of the computation for the pipe-flow turbulence. 
The slope is also clearly tending toward one. The constant ,8 = (F4/F2) '  in this 
case is apparently close to 10; the ratio Y4 to Y2 is then 2.16. The F2 calculated 
was 5.5 x s. The integral scale of velocity was 
1.44 x 10-3s; this yields Fu/.F4 w 12.2. The fundamental bandwidth (Af) chosen 

s so that F4 w 1-18 x 
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10-3 
102 103 104 105 

Aw (rad 6-1) 

FIGURE 8. Kurtosis of narrow-band filtered velocity derivative for pipe flow. 

was 17-57 Hz, and the centre-frequency was 3-00 kHz. The corresponding band- 
width to centre-frequency ratio is 5.86 x 10-3. 

The length of the record used in this calculation was 1142 s, which corresponds 
to 2.08 x 107F2. This long record of available data is responsible for the smooth- 
ness of the curve shown in figure 8. It must be pointed out here, by comparing 
figures 7 and 8, that the convergence of the variables to the Gaussian is approxi- 
mately a factor of two better for the results shown in figure 8 (pipe flow) than for 
those shown in figure 7 (jet flow). 

The bandwidth resolution with respect to the integral scale of the process can 
be expressed by the product of the fundamental bandwidth Af and an integral 
scale F;  and it is desirable to have this product small, in order to achieve con- 
vergence of the variable to Gaussian. Because the process considered in this study 
is that obtained from the velocity derivatives, an intuitive choice of the integral 
scale to be used in forming the product is F L ,  or the scale associated with the 
derivatives. (See Lumley 1970.) The calculated result of the product for 
each flow used in this study is: for jet flow, AfFL w 3.1 x for pipe flow, 
A f F h  N 2 x Examination of these results indicates that the values of the 
product A f F h  do not reflect the behaviour of the filtered signals shown in 
figures 7 and 8. As was pointed out, the convergence of the variable shown in 
figure 8 is a factor of more than two better than that shown in figure 7. This 
implies that the values of the product A f F  should be approximately a factor of 
two smaller in the pipe flow than in the jet flow. 

This suggests that the integral scale 37; is not the proper one to be used in 
forming the product of 9; and it is necessary to examine the possibility of using 
other integral scales in describing the bandwidth resolution. The candidates for 
relevant integral scales in this particular study are: F h ,  Yu, T4, or that of velocity 
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Jet Pipe 

Af  4.4 17.5 
Af1c.f. 7 x 10-4 5.8 x 10-3 

r 2  4.2 x 10-5 5.5 x 10-5 
y 4  1.9 x 10-4 1.2 x 10-4 
r; 7 x 10-5 1.15 x 10-4 
rll 9.2 x 10-3 1.4 x 10-3 

F U l F *  47.8 12.2 

7 x 106 2x 107 

length 3-4 1.5 x lo6 9.5 x 106 

r 4 1 r 2  4-65 2.16 

Record f 3.1 x 104 8.2 x 106 

284 1142 

Record 1250 20 000 

A f r ;  3.1 x 10-4 2 x 10-3 

A fF4 8.4 x 10-4 z x 10-3 
A f Y U  4 x 10-2 2.4 x 

TABLE 1. Comparison of integrh scales 

derivatives, the velocity, and the scales associated with the fourth moment, 
respectively. 

Table 1 is a summary of various quantities of significance in the study of the 
narrow-band filtered signals, expressed in terms of the integral scales above. 
Table 1 indicates that the proper integral scale to be used in the description of 
the bandwidth resolution must be that of velocity itself, or 9%. The product AfFu 
shown in table 1 is approximately a factor of two smaller in pipe flow than in 
jet flow. It seems appropriate to conclude that the bandwidth resolution AfFu 
required to achieve convergence of variables to the Gaussian is of order 

It is not too surprising to find that the relevant integral scale for the band- 
width resolution is y%, not y;, even though the process under consideration is 
the derivative signal; for the high frequencies in turbulence are known to be 
modulated by the frequencies corresponding to the energy-containing eddies; 80 
the longest time scale present will still be that of the latter. This modulation by 
larger scales is of course responsible for the intermittency of the small scales. 
(See e.g. Novikov & Stewart 1964.) The intermittency is in turn responsible for 
the non-Gaussian behaviour. The argument of LumIey (1970), suggesting the 
relevance of TL, is based on properties of Gaussian processes, which have little 
bearing on turbulence. 

Figures 9-13 show that the filtered Fourier coefficients approach a Gaussian 
distribution as the bandwidth of the filter becomes small. The probability 
densities shown in these figures were calculated with a 2 x lo5 data set. The 
approach to a Gaussian distribution of the coefficient is clear. 
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FIGURE 9. Probability density of filtered Fourier coefficients of Du/Dt for pipe flow. 
Bandwidth SOAf (lAf = 17.57 Hz). + , experimental data. -, Gaussian. 
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(signa1)lr.m.s. (signal) 

FIQURE 11. Probability density of filtered Fourier coefficients of DulDt for pipe flow. 
Bandwidth 9Af (lAf = 17.57 Hz). + , experimental data. -, Gaussian. 
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FIGURE 12. Probability density of filtered Fourier coefficients of DulDt for pipe flow. 
Bandwidth 5Af (1 A j  = 17.57 Hz). + , experimental data. -, Gaussian. 
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FIUURE 13. Probability density of filtered Fourier coefficients of D.ulDt for pipe flow. 
Bandwidth 1Af (=  17.57 Hz). 

7.2. Fourth-cumulant spectrum 

In  3 3 it  was shown that the kurtosis of the narrow-band filtered coefficients is 
related to the fourth-order spectrum; the relation was given by (18); i.e. 

1 T [ K ( A w ) - ~ ]  X,(w) 
64 ; rr [~(c0) -3]  XE(w)* 
- N- 

S4(o) is a very special part of the fourth-order spectrum, defined by 

In order to comprehend more fully the quantity given by (18), we must write 
the left-hand side of (18), the kurtosis of narrow-band filtered Fourier coefficients, 
explicitly. As the bandwidth becomes small, this approaches 

(/oTu(t)cos(wt)df)4-3 (~oTu(t)cos(wt)dt)a2+ (/:u(t)sin(wt)dt) 4 

u(t) sin (wt )  cit)22-+ 23lOT dt//IOtg4(x) cos [w(t - x,)] cos [w(t - x2)1 

x sin [w(t  - x, ) ]  sin [o(t - x3) ]  sin (wt )  dx, dx, dx3, (21) 
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and xa = t,- t,. It is of interest to find the relation between (21) and the experi- 
mentally-calculated kurtosis of the filtered Fourier coefficients. 

Let C, represent cos wt;  Ci and Si be cos (@xi), sin (wxJ, i = 1, 2,3, respectively. 
Then the real part of the trigonometric term in (21) is 

trig = cos [w(t  - x,)] cos [w(t -x2)] cos [w(t - x3)] cos (wt)  

= (Ct Cl + st 81) (C, c2 + 9 2 )  (0, c3 + StS3) ct 9 

using trigonometric identities. Expanding, 

trig = [C? C, C2 + C, S,(C,S, + S1C2) + IS? S,S2] (Cf C3 + CtStS3) 
= tic, c2 c3 + c; c, X,[C3 c, s, + c3 s, c2 + s3 c, C2] 

4- s; C,S,S1 s2 s3 + cq Sf[S, S2C3 -I- S,S3C1 + s, 5 3  C2]. (22) 
Using the double-angle formulae, 

after collecting like terms the trigonometric term becomes 

trig = 8C1 C2C3 + Q[s, S2c3 + S283c1+ SlS3C2] 

cos(2t) = 2cos2t-1 and costsint = Qsin(2t), 

+ +92tc1 c2c3 - &’4t[s1 S2G + 8 2 8 3  ci + sis3c2 - ci GC8l 
f ( $82, f gs4t) [c3 cis2 + c3 81 c2 + 8 3  

+ (@2, - @4t) 4s2s3. 

c21 
(23) 

Now, integrating over x,, z2, x3 as in (21), 

+ QC2t c, c2c3 - Qc4dsl s2c3 + 8 2  s3Cl+ 8 1  s3c2 - clc2C3l 

+ ($82, + 634,) P33 Cl 8 2  + c3Slc2 + S3ClC21 
+ (~s2t-’#s4t)s1s2s3}dx1 (24) 

Perform the same analysis on the sine coefficient in (21): i.e. 

23j0T dt / / jo t  V4(x) sin [o(t - zl)] sin [w(t - z2)] sin [w(t - x3)] sin (wt)  dx,dx2dxp 
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Now, denote the real part of the filtered Fourier coefficients by A and the 
imaginary part by B. Then we can write (21) as 

&(z- g 2 2 + z 4 - B 2 )  

23/0T dt / / /ot  %4cx) [QclcZc3- +fc1+2+3 + %+~+3-4tl dx2dx3-  (27) 

The final term is oscillatory in t ;  hence it will make a negligible contribution for 
large T. For more moderate values of T ,  however, it may be expected to slow 
the convergence. 

One can easily obtain an expression in which it is not present. Let us form 

This is symmetric under interchange of any two ti. We now have 

+i23/oTdt///otsin [w(4t -x l -x2-~3)]%4(~)d~.  (28) 
-- 

- -  
( A  +iB)4 - 3(A + iB)22 = A4 + i4A3B - 6A2B2 - i 4 D 3  +B4-  3(A2 + 2iAB-B2)'. 

Now, from (27), 

&(A4 - 3 3 '  +p - 3F2) - & Re [ ( jo* exp (iwt) u(t) at). - 3 ( IOT exp (iwt) u(t) dt) ] 
= i(3- ~ A S ~  +p - 3@) - +[A4 - 6-2 +B- 3(p2 - 4 ~ 3 2 +  B?;2-  2 ~ 2 ~ 2 ) ~  

(29) 

22 

_.- 

23T/jjorn q(x) [gclc2c3- @,+,+,] dx,dx2dx3. 
[C .  11 

When we simplify the left-hand side of (29), 

(30) 
-2 4-2 -- #(A2 + B2)2- $[(A2 + B2) +%(AB - A2 B2)] .  

This will approach most rapidly to 
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Au (rad s-I) 

FIUTIRE 14. Kurtosis of narrow-band filtered velocity derivative for pipe flow. 
Comparison of two methods of calculation. 

Expression (30) was calculated numerically. The results are shown in figure 14. 
The points marked by circles are the points transferred from figure 8, effectively 
quantity (27); the points marked by triangles are the numerical results of (30). 
The two practically coincide. 

The purpose of using the more complicated expression (30) is to eliminate the 
extraneous time-dependent term in (21), improving convergence. (There are in 
general many expressions that approach the desired quantity, some faster than 
others, because slower converging terms cancel.) In  our ewe, however, the 
records are evidently sufficiently long that there is virtually no difference 
between the results, and the more complicated expression is unnecessary. 

One can also conclude (from figure 14) that (K(Ao) - 3)/(R(oo) - 3) approaches 
(31) as the bandwidth becomes small. The task is now to find what part of the 
fourth-order cumulant spectrum corresponds to (31). To do this, we must first 
examine the symmetry of the fourth-order cumulant spectrum. 

The symmetry of the higher-order spectra is discussed exclusively by Brillinger 
& Rosenblatt (1967 b) .  The fourth-order spectrum possesses a symmetry 

S4(wll O2, @3) = s4(w2, = sd(w3, @21 = s4(w1, w2) 

= s4(02, O3, wl) = s4(w37 W l r  w2) = s 4 (  - w1 - 0 2 -  0 3 ,  0 2 ,  0 3 )  

= S 4 ( ~ 1 ,  -~2 - -w , - -w , ,w3)  = S 4 ( ~ 1 , 0 2 ,  -03-0.11-02). (32) 
Among the relations given in (32), only four are independent. They are 

S4(01, @2, %) = #4( - w1 - 02 - @3, w2, w3) 

= S 4 ( ~ 1 ,  - 0 2 - 0 1 - 0 3 7 0 3 )  = S 4 ( ~ 1 , ~ 2 ,  - ~ 3 - ~ 1 - 0 2 ) .  (33) 
If we write the symmetry relations in terms of the cumulant, they become 

‘4(x1, x2? x3) = g4( - x l r  x2- x3-x1) = g4(x1-x2, - 22, x3 - 2 2 )  

= %4(x1-x3 ,x2 -x3 ,  -28). (34) 
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Using this, the fourth-order spectrum can be written 
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+ exp {iC - w121 + w2(xz - 51) + w 3 k 3  - X J I I  

+ exp {iCw,(x,- x2) - 0 2 5 2  + w3(x3 - .,)I> 
+exP{i[wi(xi-x3) +%dz2--3) -%%I)) 

q4(x1, x2, x3) dxl dx2 dx3. (35) 

The form of (35) is useful in finding the exact relation between (31) and the 
definition of the fourth-order spectrum. To simplify the algebra, let us denote 
COB (oxi) and sin (oxi) by Ci, Si, respectively. The trigonometric part of (35) is 

trig = exp { i (w,x ,  + w2x2 + w,x,)} + exp {i[( - w1 - w2 - w,) x1 + w2x2 + W&]) 

+exp{i[w,x,+ ( -w2-w1-w3)x2+w3x3]} 

+exp{i[w,x, +w,x,+ (-@s-w2-01)x3]}. (36) 

Let us investigate (36) for the cases 

(i) w1 = w, = o, = w,  

(111) w1 = - w ,  w, = w, = w, 

(v) w1 = w2 = w, w3 = -0, 

(vii) w1 = w ,  w2 = w, = - w ,  

(ii) w1 = w2 = w, = -w,  

(iv) w1 = o3 = w ,  w2 = - w ,  

(vi) w1 = w2 = - w ,  w, = w,  

(~111) w1 = w3 = - w ,  w2 = w. 

... 

... 

(i) wl = w2 = w3 = w .  The trigonometric term (36) is first written in terms of 
sine and cosine. 

trig = (C,+iS,)(C,+iS,)(C,+iS,)+(C,+iS,)(C,+iS,) (Cl-iX,)3 

+ (C, + is,) (C, +is,, (C, + is,), + (C, +is,) (C2 + is,) (C, - is,), 

+ (C2C3 - S2S3 + iSzC3 + iS3C2) (C: - i3CqSI - 3C1S: + iq) 
+ (c1 c3 - A183 f is1 c3 + is3 c1) (Cg - i3Cg s, - 3c2 hlg + is:) 
+ (ClC, - s,s, + is,c, + iS,C,) (q - i3c;s3 - 3c3sg + i@). 

= (c1c2-s1s,+is,c,+is,c1) (C,+iS3) 

(37) 

Using trigonometric relations, the real part of (37) reduces to 

Re (trig) = SC, C2 C, - 4c1+,+3 - 4S;( Cl C, C, + C, S, S, + C, S, S, - C, S, S,) 

- 4sg(c,c,c3 + c, s,s, - c,s, s, + CIS, S,) 

- 4S:(C1 c, c, - c, s, s, + c, s, s, + c, s, S,). (38) 

The fist two terms of this form resemble (31), except for the coefficients. The 
trigonometric term in (31) is given by 

ic1c2c3- @1+2+3. (39) 
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Evidently Re (trig) does not correspond to the quantity we calculated earlier. 
(ii) w1 = w2 = w3 = - w .  This gives the same results as (38). 
(iii) w1 = - w ,  w2 = w3 = w. 

trig = exp [iw(x, + x3 - xl)] + exp [iw(x, + x3 - xl)] 
+ exp [iw(x3 - x1 - x,)] + exp [iw(x, - x1 - x3) ]  

= 2(C,C3+iC,S3+iC3S,-S,S3) (Cl-iSl) 
+ (C3C,-iC3X,+iClS3+XlS3) (CZ-iSz) 

+ (C, c1 - ic, 8, + ic, 8, + S1S,) (C, - is3). ( 40) 
The real part of this is 

Re(trig) = 4ClC,C3+2(C3SlS,+C,S,S3). 

In a similar manner, 

(iv) w1 = w3 = w, w2 = -0, 

Re (trig) = 4ClC2C3+2(ClS3S,+C3S,S,); (41) 

Re (trig) = 4ClCzC3+ 2(C1XzS3-+C2S1S3); (42) 

Re(trig) = 4C,C2C3+2(ClS3S,+C,SlS3); (43) 

Re (trig) = 4C, C, C3 + 2(C, S1S3 + C3 8, S,) ; (44) 

Re (trig) = 4ClC2C3 + 2(C1S2S3 + C3S,S2). 

(v) w1 = w, = 0, w3 = - w ,  

(vi) w1 = w2 = - w ,  w3 = w, 

(vii) w1 = w ,  w2 = w3 = -0, 

(viii) w1 = w3 = - w ,  w2 = w, 

(45) 

In  (40)-(45), even though each term does not resemble the expression of (39), 
their combination might. Combining (40)-(45), 

Re (trig) = 24C1 C, C3 + 2(C3 8, S, + C, S, 8,) + 2(C1 S3S, + C3S1 8,) 
w,=w,=-w,=*w 

w,=-w,=w,= -w,=w2=w.= &ld * w  + 2(C, c, c3 + c, 81 S3) + 2(C1 s3x, 3. c, SlS3) 
+2(c2S1f13+c3g1fl,) +2(c,s,83+c3fl1S2) 

= 24C1 C2 C3 + 8(SlS, C3 + 8 1  C2 8 3  + C1 8, S3). (46) 
Next we use 

cos w(xl + x2 + x3) = cos wx, cos ox, cos wx3 - sin ox1 sin wx, cos wx3 

- sin wxl cos wx, sin wx3 - COB wxl sin wx, sin wx3, 

or c,,,,, = c1 c, c3 - xlx, c3 - S, c, 8 3  - c, 8, s3. 
Equation (46) becomes 
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; 
If we divide both sides of (47) by 64, 

(48) 1 - 84 c = 4clc2c3-&c1+2+3. 
w,=w,= -w,= f 0 
w,= -w.=wa= * w  
-wI=wI=w,= f w 

This is identical to (39). 
Thus, the coefficient of the excess of narrow-band filtered Fourier coefficients 

approaches what may be called the 'symmetric' part of the fourth-order spectrum 
(although, of course, with three variables there are many ways in which such 
might be defined). It is curious that (48) excludes, of the eight points in the 
frequency three-space of magnitude w, the two in the principal diagonal at which 
the values are equal. That is, 

S,(w) = &[S,( - w, 0, w) + S,(w, - w, w )  + S4(w, 0, - w) 

+X4(-w,  -w,w)+X4(w,  -0, --w)+S,(-w,w, -41. (49) 

The fourth-order cumulant spectrum given by (49) can be evaluated alterna- 
tively by calculating the quantity on the left-hand side of (18). Results are shown 
in figures 15-19 for pipe flow, and figures 20-25 for jet flow. The values of the 
normalized fourth-order spectrum S4(w)/S3w) at a particular w correspond to 
that of kurtosis of the narrow-band filtered Fourier coefficient multiplied by a 
factor involving the filter bandwidth. The exact relation is given by (18), or 

1 T R(Aw)-3 --[ 64n K ( c o ) - ~  1 
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 FIG^ 16. S,(w)/e(w):against frequency for pipe flow. Bandwidth 3Af 
(1Af = 17-57 Hz). 
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FIGURE 18. X,(o)/Si(w) against frequency for pipe flow. Bandwidth 7Af 
(lAf = 17-57 Hz). 

FIGURE 19. S4(o)/%(w) against frequency for pipe flow. Bandwidth 9Af 
(1Af = 17.57 Hz). 
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FIGURE 20. S,(w) /S l (w)  against frequency for je-t flow. Bandwidth IAf 
( lAf  = 4.39 Hz). 
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FIGURE 21. S,(w)/X:(o) against frequency for jet flow. Bandwidth 2Af 
(lAf = 4.39 Hz). 
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FIGURE 23. X,(w)/S,"(o) against frequency for jet flow. Bandwidth 8A.f 
( lAf = 4.39 Hz). 
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FIGURE 24. S,(w)/S:(o) against frequency for jet flow. Bandwidth l6Af 
( 1 A j  = 4.39 Hz). 
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S,(w)/S;(w) against frequency for jet flow. Bandwidth 
( lAf = 4.39 Hz). 

32h f 



462 J .  L. Lumley and K .  Takeuchi 

For example, for pipe flow, the values of kurtosis shown in figure 8 for each band- 
width were obtained with the centre-frequency fixed at fo = 3.00 kHz or oo = 
18 868, which corresponds to 64n/T times S4( 18 877)/SE(l8 877), shown in figures 
15-19for each bandwidth. For jet flow, the centre-frequency was fixed at 5-8 kHz. 
Here T is (Af’)--l. (Af’ is the width of the filter.) The normalized fourth-order 
spectra, shown in figures 15-25, are the results of smoothed spectra, obtained by 
a moving-average technique. Thus, comparing the values of kurtosis shown in 
figure 8 with those of S4(wo)/S2,(oo), the latter gives only an average value in the 
neighbourhood of the centre-frequency, not an exact value, as does the former. 

This shows that the relative value of the fourth-order spectrum increases with 
frequency. The peak of all the curves occurs approximately at the frequency 
corresponding to unity signal-to-noise ratio of the second-order spectrum. Since 
the values of S4(o)/S2,(w), shown in figures 15-19, are a measure of intrinsic excess, 
the increase of S,(w)/S;(o) with frequency implies that higher excess is associated 
with smaller scales of the flow (high wavenumber). We have no definite explana- 
tion of why the curves appear to have a nearly constant slope. It seems likely that 
it could be predicted using one of the models proposed by e.g. Novikov & Stewart 
(1964) and Novikov (1965, 1966). In  these, it  is supposed (in agreement with 
observation) that the non-Gaussian behaviour of the small scales arises from 
intermittency. That is, if a region is divided into sub-regions, each of which is 
again sub-divided in the same way, relatively few sub-resons contain much 
small-scale energy, and this is true for each sub-division. The kurtosis (and higher 
moments) can thus (in principle) be expressed in terms of the intermittency. 
Since S4/Sg is the intrinsic excess (i.e. that per unit wavenumber), this too should 
be expressible. Some of the models are fairly explicitly multiplicative, with suc- 
cessive factors obeying similarity relations. Various attempts were made to 
predict the behaviour of S4/S2, on the basis of these, without success. 

Except a t  very small filter bandwidth, the slopes of these curves are approxi- 
mately equal. At the small filter bandwidth, the lack of data record length causes 
the values to fluctuate considerably, and fail to attain statistical stability. As the 
filter bandwidth increases, more coefficients being summed together, the statistics 
improve, and the values show a definite variation with frequency. This suggests 
that, at the small filter bandwidth, the calculated value of S4(w)/SE(w) is unre- 
liable. Thus, it is necessary to  find an appropriate method to predict an experi- 
mental asymptotic value for vanishing filter bandwidth. 

Suppose A ,  is the Fourier coefficient corresponding to integration time T ,  
and n the number of records of data. One writes the averaged value 

Then the uncertainty from the true ensemble-averaged value A% is 
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where e4 = e2 = 0. For a Gaussian variable, eg = 32/3n and E:= 2/n. As a matter 
of fact, our previous results indicate that, for long time T ,  AT is nearly Gaussian, 
and furthermore e2 and c4 will be only weakly dependent on T .  For a particular 
set of n records, e2 and e4 have a fixed value. 

Using the fact that e2 g 1 ,  the experimentally-averaged fourth moments can 
be written 

- -  - 

N 

A4,-3Ay z-3G ATe, - 6AT2 e2 

A T  
- (1-22E2)+ 
A%2 

N 

.V 2 = 
A% 

Using the fact that AT is nearly Gaussian, (52) becomes 

One can calculate assuming Gaussian behaviour 

= ( 3e4 - 6 ~ ~ ) ~  = 24/n. (54) 

This is essentially equivalent to the error involved in the calculation of the fourth 
moments of the filtered Fourier coefficients. According to ( 5 4 ) ,  the uncertainty in 
jet flow becomes (?)* N 14.7 % and for pipe flow (T)* N 3.46 %. 

Now, for fixed n, as T increases, asymptotic analysis indicates that the first 
term of (53 )  behaves like 

a/T - b/T3 + . . . . (55)  

The second term is essentially constant. Multiplying by T, we have 

(56) 
-2 -2 

T(A$ - 3Ag )/A% 
N 

a-  b/T2 + yT. 
If we plot (56) in terms of T-l, for small T-I the third term yT becomes dominant; 
and as T-l increases the first two terms become dominant. In  figure 26, the 
numerical results of the left-hand side of (56) for jet data are presented. The 
values plotted were normalized by S4(w)/Si(w) at a bandwidth of 64Af or o of 
1766.4rad s-1. At each bandwidth, statistics on the value of S,(w)/Sg(w) were 
gathered, to find the mean and the standard deviation. The circles in figure 26 
correspond to the mean values; and the standard deviation at  each bandwidth is 
indicated by a line at both sides of the mean value. The curve yT was calculated 
using the value of 7 found from ( 5 4 )  for the jet data. 7 was found to be 0.147 for 
this case. The agreement of the analytical prediction with the experimental result 
is good, considering the experimental accuracy. 

The true asymptotic value a may be found from the experimental values of 
S,(w)/#?j(w) through (56), by picking the value of T, say T+, where the second 
derivative vanishes. Let 

b 11 
T2 (T-1)2' 

f(T-1) = a--++T,  f' = -2bT-l-- 

211 - 0 ,  b = -  7 
(T-1)3' 

j"'= -2b+- - 
( T-1)3 

or (57) 
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FIGURE 26. Experimental and analytical behaviour of (56). 

The location of T+ is also indicated in figure 26. The corresponaing bandwidth is 
found to be 16Af or 70.5 Hz, and at this bandwidth the corresponding 
asymptotic value is found to be 5-5 x lo*. These results explain the erratic 
behaviour of the calculated values at small bandwidth: the relevant bandwidth 
in determining the asymptotic value is not the smallest, because of the uncer- 
tainty in the calculation. Thus, for jet data, the curves for bandwidths less than 
16Af should be ignored. 

For jet flow, the bandwidth of 16Af was chosen, to re-examine the fourth-order 
spectrum. The fourth-order spectrum densities corresponding to smaller fre- 
quencies at this bandwidth were also recalculated. Results are shown in figure 27. 
The fourth-order spectral densities stay approximately constant for the lower 
frequency range, before they exhibit any definite trend. We believe this to be 
because of the statistical accuracy limit in the calculation of S4(w)/S2,(w). From 
118). 
\ I ,  

S ( w )  AN-- 
S~,(W) 64n [ K ( c o ) - ~ ]  ' 

1 T [R(Aw) -31 

To estimate the error in the calculation, let 

Then, from (53), 
4 = fM4/S2,(@). 

i m 

where K ,  is the true value. The error associated with 4 is 

I T  
c = En(K,- 3) rl* 

e 
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FIGTJRE 27. Fourth-order spectrum. Bandwidth = 16Af. 

For n = 1250, K,-  3 = 3.2. Using r2 = 24/n, 
- 
($)* = 3-05 x 10". (59) 

From (53), it can be seen that the calculated value of the fourth moment is the 
sum of the true value and the uncertainty of the calculation. The values shown 
in figuxe 27 are the result of these sums; and the true values can be obtained by 
subtracting the uncertainty from them. Figure 28 represents the result of doing 
this. The accuracy limit in the calculation given by (59) is shown in figure 28. 
This is also indicated in figure 27, suggesting that the constant values of 
S,(w)/Sz(w) in this figure are an artifact of the computational inaccuracy. 

30 F L M  74 
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w (rad s-l) 

FIGURE 28. True experimental value of S4(u)/h';(w) for j e t  flow. 
Bandwidth = 16Af. 

8 .  I. The central-limit theorem 8. Conclusions 

The experimental results shown in figures 7 and 8, and 9-13, completely support 
the analytical conclusion of Lumley (1971). The narrow-band atered Fourier 
coefficients of non-Gaussian turbulent velocity derivative signals approach 
Gaussian as the filter bandwidth becomes small, and the rate of approach ia 
proportional to the reciprocal of the filter bandwidth. 

To demonstrate the approach to a Gaussian distribution of the velocity deriva- 
tive signals experimentally, the product AfFu must be quite small. (Afis the ater 
bandwidth; and YU is the integral scale associated with the velocity signals.) 
Typically, it is order 5 x In  addition, a sufficiently long total record of data 
is required to obtain good results. If a longer total is available, it is possible to 
improve the results of calculation by further reducing the bandwidth Af. 
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8.2. Higher-order spectra 

Define the fourth-order cumulant spectrum by 

(g4(4(x1, x,, x3) is the fourth-order cumulant.) Then the kurtosis of narrow-band 
filtered Fourier coefficients for turbulence velocity derivative signals is related 
to a special part of the fourth-order cumulant spectrum. If the latter is denoted 
by S4(w), the relation is 

(61) 
1 T(K(Aw)-3) &,(a) 

w- 

n(K(o0) - 3) XZ,(w)’ 

= &[fix,( - w ,  w,  w )  + S,(w, - w, w )  + S,(w, 0, - w )  

+S4(-w,  - 0 , w ) + S 4 ( 0 ,  -0, -0 )+Sg( -6J ,w,  -41. (62) 

The numerical calculation of S4(0)/S2(w) showed that the fourth-order 
spectrum increases with frequency, with a nearly constant slope. An error 
anaIysis indicated that there is an optimum bandwidth for calculation of 
S,(o)/Si(w), and that below this the calculated values become progressively less 
reliable. 
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